David Linthicum
Contributor

You’re doing cloud-based AI and machine learning wrong

analysis
Feb 05, 20212 mins
AnalyticsArtificial IntelligenceCloud Computing

Artificial intelligence and machine learning are hard, and most building these systems don’t know what they are doing. Here’s how to avoid AI/ML failures.

roadmap to success past failures, obstacles, mistakes, etc.
Credit: Thinkstock

Rackspace Technology just announced the results of a global survey that reveals that the majority of organizations lack the internal resources to support critical AI and machine learning initiatives. Indeed, 34% of respondents reported artificial intelligence projects that failed.

The larger issue is the misapplication of AI and ML for applications where these particular technologies are contraindicated. This has been a problem since the advent of neural networks and AI, which is much longer than you think.

AI on public clouds is just too easy and cheap not to leverage, so it’s being used with business applications where the process of learning or finding patterns is not a requirement. When AI is the shiny new hammer, every application looks like a nail.

Applications that are good candidates for AI or ML are those that need to determine and assign meaning to patterns. Think of the systems employed now on factory floors to determine product quality using image recognition and automation, or fraud detection programs in banking that look at transaction data.

A second problem is the lack of training data to support the use of AI and ML. Data teaches the AI engine to assign meaning to patterns, and your AI engine is only as good as the training data available.

These days enterprises often don’t understand where the training data is located, what the single source of truth is, or what the data means. Data is everything in the world of AI; knowledge is derived from data. If you don’t have a solid data source, and you don’t have an excellent understanding of the meaning of the data, AI won’t work for you.

Finally, as the study calls out, many enterprises don’t have the skills to select the right tools, build the right applications, and deploy AI and ML systems effectively. I get that talent is tough to find. It’s actually a pretty involved skill set: cloud services, cloud databases, cloud AI and ML systems, and most importantly, the ability to configure the right technology to meet the needs of the business applications.

This technology is powerful—a game changer for many businesses—considering its potential. However, organizations need to focus on the proper purpose, understand their own data, and go after the right skills.

David Linthicum
Contributor

David S. Linthicum is an internationally recognized industry expert and thought leader. Dave has authored 13 books on computing, the latest of which is An Insider’s Guide to Cloud Computing. Dave’s industry experience includes tenures as CTO and CEO of several successful software companies, and upper-level management positions in Fortune 100 companies. He keynotes leading technology conferences on cloud computing, SOA, enterprise application integration, and enterprise architecture. Dave writes the Cloud Computing blog for InfoWorld. His views are his own.

More from this author