Take advantage of the Memento design pattern to store and restore an object's state to support undo or rollbacks in your application. Credit: Thinkstock We use design patterns to solve common design problems and reduce the complexities in our source code. The Memento design pattern is a behavioral design pattern that can be used to provide an undo or rollback capability in an application, or simply to reset the state of an object in an ASP.Net web application, for example. By storing an object’s state to an external location called a Memento, this pattern allows that state to be restored to the object at a later time. Let’s explore how we can use the Memento design pattern in C#. Every object has its internal state. A Memento gives us a way to save that state and restore it while still abiding by the principles of encapsulation, which dictate that non-public members of an instance of a class should not be available to the outside world. This is because the Memento is available only to the object whose state it has stored. The participants in the Memento design pattern include a Memento, an Originator, and a Caretaker. While the Memento class stores the state of the object, the Originator creates the Memento and uses it to restore the state when needed. The Caretaker is responsible only for storing the Memento—it is not supposed to alter the Memento instance. Implementing the Memento pattern In this section we will implement the Memento design pattern in C#. We will create a simple program that has three classes – a Calculator class, a Memento class, and the client, i.e. the Main method. Refer to the Calculator class given below. public class Calculator { int result; public Calculator(int i = 0) { result = 0; } public void SetResult(int i = 0) { this.result = 0; } public void Add(int x) { result += x; } public void Subtract(int x) { result -= x; } public int GetResult() { return result; } public Memento CreateMemento() { Memento memento = new Memento(); memento.SetState(result); return memento; } public void SaveState (Memento memento) { result = memento.GetState(); } } Note the CreateMemento and SetMemento methods in the Calculator class. While the former creates a Momento instance, the latter retrieves the saved state and assigns the value back to the result variable. The Memento class The Memento class contains two methods, SetState and GetState. While the former is used to store the state information, the latter is used to retrieve the saved state. public class Memento { int state; public int GetState() { return state; } public void SetState(int state) { this.state = state; } } The client in this example is the Main method that creates an instance of the Calculator class and makes calls to the Add and Subtract methods to perform computation. In addition, Main saves the state information at a particular checkpoint by making a call to the SaveState method. Later, this saved state is restored and the value of the result variable is displayed at the console window. This is illustrated in the code snippet given below. static void Main(string[] args) { Calculator calculator = new Calculator(); calculator.Add(5); calculator.Add(10); calculator.Subtract(10); Memento checkPoint = calculator.CreateMemento(); calculator.Add(100); Console.WriteLine(“The value of the result variable is: “+calculator.GetResult()); calculator.SaveState (checkPoint); Console.WriteLine(“The value of the result variable at first checkpoint is: “ + calculator.GetResult()); Console.Read(); } The complete Memento pattern example Here is the complete program for your reference. class Program { static void Main(string[] args) { Calculator calculator = new Calculator(); calculator.Add(5); calculator.Add(10); calculator.Subtract(10); Memento checkPoint = calculator.CreateMemento(); calculator.Add(100); Console.WriteLine(“The value of the result variable is: “+calculator.GetResult()); calculator.SaveState (checkPoint); Console.WriteLine(“The value of the result variable at first checkpoint is: “ + calculator.GetResult()); Console.Read(); } } public class Calculator { int result; public Calculator(int i = 0) { result = 0; } public void SetResult(int i = 0) { this.result = 0; } public void Add(int x) { result += x; } public void Subtract(int x) { result -= x; } public int GetResult() { return result; } public Memento CreateMemento() { Memento memento = new Memento(); memento.SetState(result); return memento; } public void SetMemento(Memento memento) { result = memento.GetState(); } } public class Memento { int state; public int GetState() { return state; } public void SetState(int state) { this.state = state; } } The Memento design pattern gives us a handy way to store and retrieve an object’s state. You can take advantage of this pattern to perform an undo or a rollback. However, one of the downsides of using this pattern is that the process of saving an object’s state and restoring it later can take quite some time—i.e., it may be detrimental to the application’s performance. So, when using the Memento pattern, be sure to keep performance in mind. Finally, also be sure that the internal structure of your object is not exposed to the outside world. Related content feature What is Rust? Safe, fast, and easy software development Unlike most programming languages, Rust doesn't make you choose between speed, safety, and ease of use. Find out how Rust delivers better code with fewer compromises, and a few downsides to consider before learning Rust. By Serdar Yegulalp Nov 20, 2024 11 mins Rust Programming Languages Software Development how-to Kotlin for Java developers: Classes and coroutines Kotlin was designed to bring more flexibility and flow to programming in the JVM. Here's an in-depth look at how Kotlin makes working with classes and objects easier and introduces coroutines to modernize concurrency. By Matthew Tyson Nov 20, 2024 9 mins Java Kotlin Programming Languages analysis Azure AI Foundry tools for changes in AI applications Microsoft’s launch of Azure AI Foundry at Ignite 2024 signals a welcome shift from chatbots to agents and to using AI for business process automation. By Simon Bisson Nov 20, 2024 7 mins Microsoft Azure Generative AI Development Tools news Microsoft unveils imaging APIs for Windows Copilot Runtime Generative AI-backed APIs will allow developers to build image super resolution, image segmentation, object erase, and OCR capabilities into Windows applications. By Paul Krill Nov 19, 2024 2 mins Generative AI APIs Development Libraries and Frameworks Resources Videos